# Thermal Model Generation and Analysis of the MDC22GCMG-67E0 Multiple Device Canopy

#### **Baseline Results**

Legacy Electronics Project: TDSW130509-01 January 20, 2012 PRASAD TOTA and NATE HANLON

**MECHANICAL ANALYSIS DIVISION** 



### **Objectives**

- To build a Computational Fluid Dynamics FIoTHERM® model of Legacy Electronics' MDC22GCMG-67E0 multiple device canopy, and simulate the package when mounted in a JEDEC Still-Air test environment.
  - Power Dissipation
    - Total Power: 0.36 Watts/device x 2 = 0.72 W
  - Air-Flow Environment
    - Free Convection



# **JEDEC Still-Air Test Environment**

Ambient Temperature: 20 °C Elevation: Sea Level Enclosure Dimensions (in): 12 X 12 X 12 Jedec Board Dimensions (mm): 114.5 X 101.6 X 1.6 Jedec Board Dielectric: FR4 Jedec Board Metal: Cu

| Jedec Board Stackup |                |      |  |  |  |  |
|---------------------|----------------|------|--|--|--|--|
| Trace               | Thickness (oz) | % Cu |  |  |  |  |
| 1                   | 2              | 20   |  |  |  |  |
| 2                   | 1              | 90   |  |  |  |  |
| 3                   | 1              | 90   |  |  |  |  |
| 4                   | 2              | 20   |  |  |  |  |







#### **Package Dimensions**



#### MDC22GCMG-67E0 Stackup



#### **Base Board Layer Detail**

| Layer | Туре   | Thickness<br>(Oz) | Coverage<br>(%) |
|-------|--------|-------------------|-----------------|
| 1     | Signal | 1                 | 17%             |
| 2     | Ground | 1                 | 74%             |
| 3     | Signal | 1                 | 6%              |
| 4     | Signal | 1                 | 7%              |
| 5     | Power  | 1                 | 73%             |
| 6     | Signal | 1                 | 16%             |



Layer 1







Layer 2

Layer 4

Layer 5

Layer 6

# **Canopy Layer Detail**

| Layer | Туре   | Thickness<br>(Oz) | Coverage<br>(%) |
|-------|--------|-------------------|-----------------|
| 1     | Signal | 1                 | 20%             |
| 2     | Ground | 1                 | 80%             |
| 3     | Power  | 1                 | 79%             |
| 4     | Signal | 1                 | 1%              |



Layer 1



Layer 2

Layer 4



Layer 3

# Graphics

### **Material Properties**

|         | Material                        | Conductivity<br>(W/mK) |
|---------|---------------------------------|------------------------|
| Prepreg | FR4                             | 0.3                    |
| Traces  | Cu                              | 384                    |
| Solder  | Solder<br>(Sn96.5% and Ag3.5 %) | 78.4                   |

- The in-plane conductivities of layers are calculated as average of Cu and FR4 depending on % coverage.
- The Solder properties were obtained from FloTHERM Library with 96.5% Sn and 3.5% Ag.



#### **Via and Solder Pad Details**

- Similar to the layer definition seen in slides 6 and 7, the vias and canopy solder pads are modeled as rectangular blocks with volume weighted thermal conductivity.
- A summary of the thermal conductivities are seen below.
- Detailed calculations are available upon request

| Rail Vias    |       |      |     |  |  |
|--------------|-------|------|-----|--|--|
| outline area | 14    | mm^2 |     |  |  |
| # of vias    | 24    |      |     |  |  |
| area of vias | 0.75  | mm^2 | 5%  |  |  |
| area of FR4  | 13.25 | mm^2 | 95% |  |  |
| k_effective  | 7.76  | W/mK |     |  |  |

| Solder Pads       |       |      |     |  |  |
|-------------------|-------|------|-----|--|--|
| outline area      | 9.8   | mm^2 |     |  |  |
|                   |       |      |     |  |  |
| solderball area   | 0.18  | mm^2 |     |  |  |
| # of solderballs  | 24    |      |     |  |  |
| total solder area | 4.30  | mm^2 | 44% |  |  |
|                   |       |      |     |  |  |
| area of air       | 5.50  | mm^2 | 56% |  |  |
|                   |       |      |     |  |  |
| k_effective       | 34.42 | W/mK |     |  |  |

| Lower Board Top-L3 |        |      |     |  |  |
|--------------------|--------|------|-----|--|--|
| outline area       | 161    | mm^2 |     |  |  |
| # of vias          | 48     |      |     |  |  |
| area of vias       | 1.51   | mm^2 | 1%  |  |  |
| area of FR4        | 159.49 | mm^2 | 99% |  |  |
| k_effective        | 1.60   | W/mK |     |  |  |

| Canopy L3-Bottom |        |      |     |  |  |
|------------------|--------|------|-----|--|--|
| outline area     | 161    | mm^2 |     |  |  |
| # of vias        | 58     |      |     |  |  |
| area of vias     | 1.82   | mm^2 | 1%  |  |  |
| area of FR4      | 159.18 | mm^2 | 99% |  |  |
| k_effective      | 1.87   | W/mK |     |  |  |

| Lower Board L4-Bottom |        |      |     |  |  |  |
|-----------------------|--------|------|-----|--|--|--|
| outline area          | 161    | mm^2 |     |  |  |  |
| # of vias             | 58     |      |     |  |  |  |
| area of vias          | 1.82   | mm^2 | 1%  |  |  |  |
| area of FR4           | 159.18 | mm^2 | 99% |  |  |  |
| k_effective           | 1.97   | W/mK |     |  |  |  |

| Canopy Top-L3 |        |      |     |  |  |  |
|---------------|--------|------|-----|--|--|--|
| outline area  | 161    | mm^2 |     |  |  |  |
| # of vias     | 34     |      |     |  |  |  |
| area of vias  | 1.07   | mm^2 | 1%  |  |  |  |
| area of FR4   | 159.93 | mm^2 | 99% |  |  |  |
| k_effective   | 1.22   | W/mK |     |  |  |  |

# Graphics

#### **DDR2: 2-Resistor model**

 The DRAM's are modeled as a two resistor compact thermal models. The values for Junctionto-Board thermal resistance (Ø JB) and Junction-to-Case thermal resistance (Ø JC) were extracted from Micron Data Sheet.

| Table 7: Thermal Impedance |         |           |                               |                               |                               |             |             |
|----------------------------|---------|-----------|-------------------------------|-------------------------------|-------------------------------|-------------|-------------|
| Die Revision               | Package | Substrate | θ JA (°C/W)<br>Airflow = 0m/s | θ JA (°C/W)<br>Airflow = 1m/s | θ JA (°C/W)<br>Airflow = 2m/s | θ JB (°C/W) | θ JC (°C/W) |
| F1                         | 60-ball | 2-layer   | 56.7                          | 42.1                          | 36.8                          | 22.7        | 2.5         |
| L                          |         | 4-layer   | 40.2                          | 32.8                          | 29.9                          | 22.1        |             |



# **Operating Temperature Limits**

- According to the datasheet published by the DRAM manufacturer (Micron) the maximum DRAM operating temperatures are:
  - Commercial Temperature (IT):
    - 0°C <Tcase <85°C</li>







### **Component Temperature Summary**

| DRAM   | Tcase_predicted<br>(°C) | *Tcase_max<br>(°C) | Margin (°C) |
|--------|-------------------------|--------------------|-------------|
| top    | 51.4                    | 85                 | 33.6        |
| bottom | 46.5                    | 85                 | 38.5        |

\* max junction temperature from Micron datasheet

| DRAM   | Tj_predicted<br>(°C) | Tamb (°C) | Heat Diss<br>(W) | Θja*<br>(°C/W) |
|--------|----------------------|-----------|------------------|----------------|
| top    | 51.4                 | 20.0      | 0.36             | 87.3           |
| bottom | 46.5                 | 20.0      | 0.36             | 73.7           |

\* Junction-to-Ambient thermal resistance

13

#### **Air Temperature and Speed**

Cutplane taken through centerline of the package



# Graphics 14

#### **Host Board Surface Temperature**





#### **Component Surface Temperature**





#### Summary

- A Computational Fluid Dynamics, FloTHERM® model of Legacy Electronics' MDC22GCMG-67E0 multiple device canopy has been created. The device has been equipped with 2 Micron DDR2-MT47H256M4 memory chips, and simulated in a JEDEC JESD51-2A Still-Air test environment.
- The predicted case temperature of the memory chips are:
  - Top DRAM 51.4 °C; 33.6 °C below the maximum operating temperature
  - Bottom DRAM 46.5 °C; 38.5 °C below the maximum operating temperature
- The junction-to-ambient thermal resistance of the hottest DRAM is predicted to be ~ 87.3 °C/W

